Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2200548

RESUMEN

The transmission and infectivity of COVID-19 have caused a pandemic that has lasted for several years. This is due to the constantly changing variants and subvariants that have evolved rapidly from SARS-CoV-2. To discover drugs with therapeutic potential for COVID-19, we focused on the 3CL protease (3CLpro) of SARS-CoV-2, which has been proven to be an important target for COVID-19 infection. Computational prediction techniques are quick and accurate enough to facilitate the discovery of drugs against the 3CLpro of SARS-CoV-2. In this paper, we used both ligand-based virtual screening and structure-based virtual screening to screen the traditional Chinese medicine small molecules that have the potential to target the 3CLpro of SARS-CoV-2. MD simulations were used to confirm these results for future in vitro testing. MCCS was then used to calculate the normalized free energy of each ligand and the residue energy contribution. As a result, we found ZINC15676170, ZINC09033700, and ZINC12530139 to be the most promising antiviral therapies against the 3CLpro of SARS-CoV-2.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Simulación de Dinámica Molecular , Péptido Hidrolasas , Ligandos , Medicina Tradicional China , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/química , Endopeptidasas , Simulación del Acoplamiento Molecular , Antivirales/química
2.
ACS Omega ; 7(42): 37476-37484, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2082876

RESUMEN

Transmissible and infectious viruses can cause large-scale epidemics around the world. This is because the virus can constantly mutate and produce different variants and subvariants to counter existing treatments. Therefore, a variety of treatments are urgently needed to keep up with the mutation of the viruses. To facilitate the research of such treatment, we updated our Virus-CKB 1.0 to Virus-CKB 2.0, which contains 10 kinds of viruses, including enterovirus, dengue virus, hepatitis C virus, Zika virus, herpes simplex virus, Andes orthohantavirus, human immunodeficiency virus, Ebola virus, Lassa virus, influenza virus, coronavirus, and norovirus. To date, Virus-CKB 2.0 archived at least 65 antiviral drugs (such as remdesivir, telaprevir, acyclovir, boceprevir, and nelfinavir) in the market, 178 viral-related targets with 292 available 3D crystal or cryo-EM structures, and 3766 chemical agents reported for these target proteins. Virus-CKB 2.0 is integrated with established tools for target prediction and result visualization; these include HTDocking, TargetHunter, blood-brain barrier (BBB) predictor, Spider Plot, etc. The Virus-CKB 2.0 server is accessible at https://www.cbligand.org/g/virus-ckb. By using the established chemogenomic tools and algorithms and newly developed tools, we can screen FDA-approved drugs and chemical compounds that may bind to these proteins involved in viral-associated disease regulation. If the virus strain mutates and the vaccine loses its effect, we can still screen drugs that can be used to treat the mutated virus in a fleeting time. In some cases, we can even repurpose FDA-approved drugs through Virus-CKB 2.0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA